
Traumatic Cardiac Arrest

Does CPR Play a Role?

St. Francis Trauma Symposium September 13th, 2024 Nathan Powell, DO FACOS

Disclosures

• I have NO financial disclosures or conflicts of interest with the presented material in this presentation

Traumatic Cardiac Arrest (TCA)

- A paradigm shift has occurred with regards to resuscitation in TCA
 - Futile attempts < More promising interventions
- Goal:
 - Rapidly and aggressively treat the common potentially reversible causes of TCA
 - Although overall mortality of TCA is still very high, outcomes in selected subgroups are improving
- Response to TCA resuscitation is time-critical and success depends on a well-established chain of survival
 - Includes advanced pre-hospital and specialized trauma center care

Traumatic Cardiac Arrest (TCA)

- TCA patients are on average:
 - Relatively young (~40 years)
 - Mostly males (~80%)
 - Relatively healthy (~60%)
- Younger age and better health status:
 - Salvageable cases = better recovery potential
 - Unsalvageable cases = underlines the economically and societal burden of productive life years lost
 - Successful transfer of these pts to organ donor programs

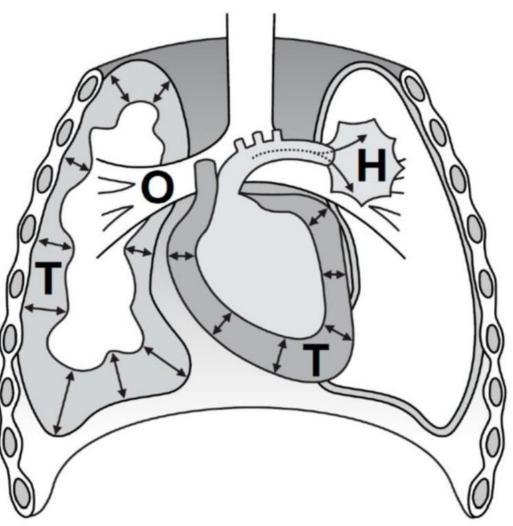
- Epidemiological differences exist between continents and countries
 - I.e. Epidemiological impact of TCA with firearms in the US vs European countries

Causes of TCA

- Divided into *potentially reversible* vs *non-reversible* causes
 - Often challenging to make this diagnostic decision upon arrival of the patient in the trauma center
- Prognosis of Outcome after TCA difficult to predict
- Termination of TCA therapy in those cases must not be considered as failure of the trauma team
 - Is rather as an ethical appropriate decision withholding valuable resources in a futile situation of medically senseless activism

Potentially Reversible Causes of TCA (H.O.T.T.)

• Hypovolemia (48%)


- Hemorrhage, until proven otherwise
- Most common, potentially reversible cause of TCA

• Oxygenation impairment (13%)

• Requires the creation of a patent airway and optimizing oxygen supply

• Tension pneumothorax (13%)

- May present in spontaneously breathing patients, but also rapidly develop after endotracheal intubation and mechanical ventilation
- Tamponade of the pericardium, i.e., 'cardiac tamponade' (10%)
 - May both be caused by blunt or penetrating chest trauma

Factors Associated with Improved Outcomes

Younger age

Witnessed TCA

- Female sex
- Extremity injuries
- Lower ISS
- Reactive pupils

- Bystander CPR
- Short transport times
- Certain interventions, such as airway management

- Presence of a shockable cardiac rhythm (e.g., ventricular tachycardia)
- Cardiac motion on ultrasound

Factors Associated with Poor Prognosis

- Asystole (non-shockable rhythm with no cardiac motion) has the worst prognosis
- PEA without cardiac motion on POCUS has an extremely poor prognosis

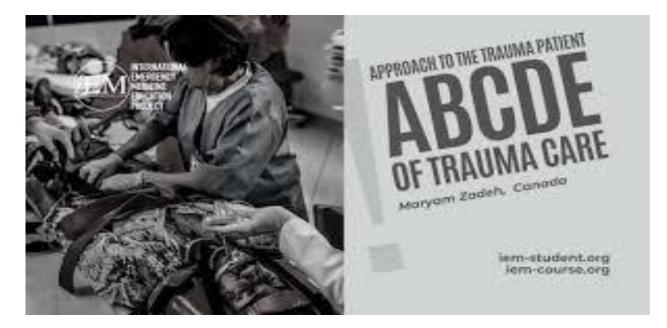
Pseudo PEA

- Cannot always distinguish between TCA (complete cessation of blood flow) vs traumatic peri-arrest
- 'Pseudo PEA' = state of severe hypotension with BP below the subjective/notoriously unreliable threshold of manual palpatory pulse detection
 - i.e. PEA with blood flow (when cross checked by POCUS)
- Pseudo PEA = comparably good prognosis vs asystole/true PEA
 - Particularly if *profound hypovolemia* is the cause and is rapidly treated
 - Conversely, maltreated pseudo PEA is likely to deteriorate into full cardiac arrest
 - Treating a pseudo PEA as true PEA with chest compressions and epinephrine may be detrimental (esp if hypovolemia is cause)

ABCD – One Size Fits All?

- ABC approach has been supported primarily by consensus rather than scientific evidence
- In busy urban trauma centers, ABCs are usually simultaneously with a large multispecialty team
- In rural and resource-limited environments, these often performed sequentially by a single physician
- In medical cardiac arrest, there has been a shift protocols (ie AHA) to prioritize perfusion through early compressions instead of securing the airway first
 - CAB approach has been shown to shorten time to restoring perfusion = better outcomes

A IRWAY BREATHING CIRCULATION


DISABILITY

- Response: AVPU or Glasgow Coma Scale
- PEARL
- Review ABCs
- Reversible drugs
- Blood Glucose
- Recovery position

EXPOSE

ABCD – One Size Fits All?

- What about with TCA?
- It gets muddy!

- Looking at H.O.T.T. -
 - Hypovolemia resembles a Cproblem
 - Oxygenation impairment an A/Bproblem
 - Tension pneumothorax a B/Cproblem
 - Cardiac tamponade a C-problem

CAB NOT ABC

Catastrophic hemorrhage/life threat management

- Utilize direct pressure, packing and tourniquets
- Consider (in appropriate settings) the use of REBOA

Circulation restoration

- Obtain large bore IV or IO access
- Replace lost blood with either component or whole blood therapy

Airway management


4

1

- Utilize basic airway maneuvers as able until first C's have been addressed
- Dose RSI medications in accordance with hemodynamics

Breathing/Respiratory Support

- Address immediate life-threats (e.g. pneumothorax)
- •Use care with ventilation to minimize effect of positive pressure application
- (i.e. avoid large tidal volumes, match minute ventilation to acidosis)

- Frequently *functional*
 - Obstruction from sagging tongue, soft palate or epiglottis in unconscious or arrested victims
 - Gastric regurgitation, blood, or other materials
 - Generally, functional airway problems are relatively easy to manage
 - Standard airway maneuvers (e.g., jaw trust) and simple tools (e.g., oropharyngeal airway, suction devices)
- Less frequently, can be *anatomical*
 - e.g., extensive maxillofacial injuries/direct trauma to the airway
 - Can be challenging to handle and may require expert support (e.g., an anesthesiologist) and specialized equipment (e.g., surgical airway sets)

- Studies indicate the detrimental effects of a traditional ABC approach with early endotracheal intubation, on hemodynamics and outcomes in critical trauma patients
- Intubation attempts in trauma patients may contribute to TCA!
- In the initial phase of TCA treatment it is pivotal to create an open (patent) airway for oxygenation, but not necessarily to create a secured airway (ETT)

- Intubation leads to:
 - Vasoconstriction loss
 - Vasodilation triggered by RSI
 - Reduced cardiac filling and output in pts already experiencing reduced blood volume
 - Loss of gasp for air
 - Physiologically, patients experiencing severe bleeding instinctively gasp for air, increasing venous return and cardiac output
 - PPV leads to worsening perfusion of end organs, higher lactate and worse base deficits
- Studies show intubation in the field led to
 - Longer vent requirements (CAB 10.4 days vs ABC 14.7 days)
 - Hospital LOS (CAB 16.7 days vs ABC 20.2 days)
 - ICU duration (CAB 11.7 days vs ABC 15.2 days)
 - Mortality rate (CAB 12.4% vs ABC 23%)

- We need to deliberately de-emphasize or postpone time- and resource-intense airway-securing maneuvers in the very initial phase of resuscitation, when an open, patent airway is present or can quickly be established non-invasively
- In a peri-arrest setting, delaying intubation:
 - Saves critical resources (personnel, time)
 - Limits the detrimental cardiovascular effects of drug-assisted intubations and PPV
 - Particularly in under-resuscitated, hypovolemic patients

Think 'RBI', not 'RSI' with peri-arrest

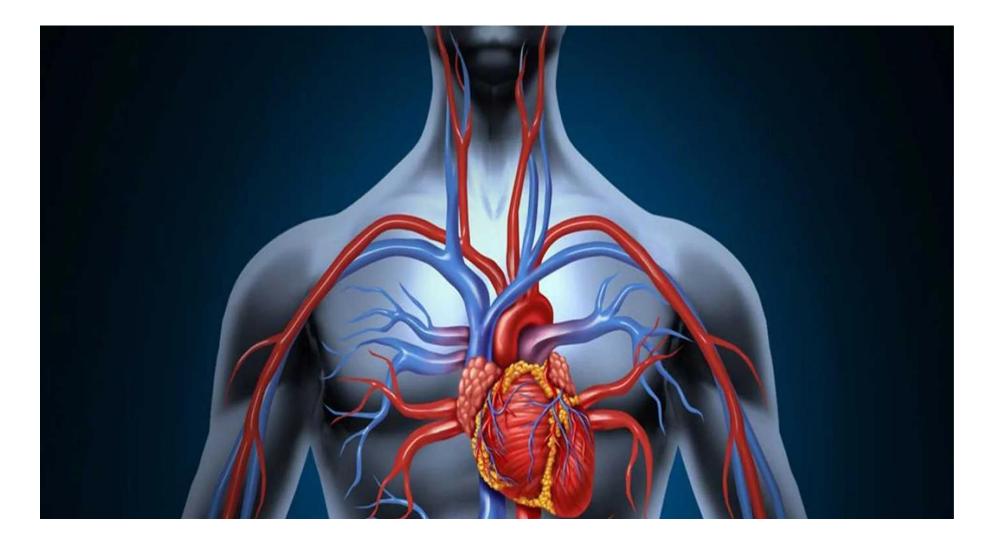
(RBI = 'Resuscitation Before Intubation')

Caveats to Intubation Delay

- Some situations demand urgent invasive airway management:
 - Pt actively vomiting
 - Highly agitated
 - Significant maxillofacial/neck/airway burn trauma
 - Significant TBI

'Breathing' Challenges in TCA

'Breathing' Challenges in TCA


- Tension PTX (13%)
- Massive HTX
- Traumatic diaphragmatic rupture
- Multiple rib fractures (flail chest)
- Aspiration of blood

'Breathing' Challenges in TCA

- Administering 100% high flow oxygen to all TCA patients is advocated
- PPV may aggravate hypotension and hypoperfusion by impeding venous return to the heart, particularly in hypovolemic patients
 - PPV may rapidly convert a rather harmless, even undetected pneumothorax into a life-threatening tension pneumothorax, becoming a secondary trigger of TCA itself
- Low tidal volumes, minimal PEEP levels, and slow respiratory rates may help optimize cardiac preload
- Ventilation should always be monitored with continuous waveform capnography and adjusted to achieve target end tidal CO₂ levels after ROSC

'Circulation' Challenges in TCA

'Circulation' Challenges in TCA

- Most commonly due to hypovolemia, mostly by exsanguination (50%), cardiac tamponade (10%), cardiac contusion
- 5 places you can bleed to death
 - Chest
 - Abdomen
 - Pelvis/Retroperitoneum
 - Long bone fxs
 - On the street

'Circulation' Challenges in TCA

- Injury by electric currents can cause TCA
 - Classically by inducing cardiac arrhythmias, even without anatomical cardiac damage
 - In electro-induced arrhythmias, such as VF, standard ALS algorithms apply for resuscitation
- With hypotension/TCA, must assume hypovolemia/hemorrhage until proven otherwise
 - Hemostatic resuscitation and hemorrhage control are the priorities
 - Pelvic binder
 - REBOA
 - Resuscitative thoracotomy, pericardotomy, aortic cross clamping, internal cardiac massage with simultaneous transfusion
 - The chance of survival is about 4x higher in cardiac stab wounds than in GSW
 - Survival rates from severe trauma-related ER thoracotomies from 7% in blunt trauma to >50% in not yet arrested patients

Damage Control Resuscitation

- Includes permissive hypotension, resuscitative coagulation management, and damage control interventions
- Patients with TBI may require higher blood pressures
- Peri-arrest BP management in the context of TCA is challenging, poses dilemmas, and should be individualized based on patient and trauma characteristics

Cardiac Rhythms in TCA

- Asystole (~40%) and PEA (~25%) are the prevalent ECG rhythms in TCA
- Shockable rhythms such as VF are rare (~7%), but associated with a better prognosis
 - Like medical cardiac arrest, shockable rhythms should be shocked also in TCA immediately
 - A shockable rhythm in patients with trauma may indicate a medical rather than traumatic etiology of the arrest

Chest Compressions in TCA

Controversial

- Chest compressions, both manual and device assisted, are likely less effective in hypovolemic subjects
- "Don't pump an empty heart"

Chest Compressions in TCA

- Animal studies show that in hypovolemic low flow states, chest compression may not only be *ineffective*, but even *harmful*
- Chest compression in obstructive TCA etiologies, e.g., tension pneumothorax and cardiac tamponade, are likely also less effective
- Considering the economics of resuscitation, resources (e.g., time and personnel) may be allocated to more beneficial, high-yield interventions, instead of performing ineffective or even harmful chest compressions
- Chest compressions should take a lower priority than immediate treatment of reversible causes in TCA, e.g., controlling hemorrhage

Chest Compressions in TCA

- Use of epinephrine w/ TCA did not improve prehospital ROSC, and was associated with decreased short-term survival and decreased 7day survival
- In general , we need to de-prioritize the immediate initiation of chest compressions and epinephrine administration, as conventionally stressed in medical cases of CA

Caveats to Withholding Chest Compressions in TCA

- Notable exceptions where CPR should be continued with TCA:
 - Medical causes of arrest
 - Cardiac contusions, MI
 - Asphyxiation (e.g., burial under sand or in a crowd crush)
 - Electricity injuries
 - Isolated traumatic brain injury

'Disability' Challenges in TCA

- Loss of cerebral function in TCA may result from:
 - Direct cerebral trauma
 - Extra cerebral processes, e.g., LOC after cerebral hypoperfusion in cardiac arrest following other causes
- Spinal injuries
 - Particularly C3/C4/C5 (feed the phrenic nerve) can cause insufficient breathing, respiratory arrest, and ultimately TCA

When NOT to Resuscitate TCA

- Withhold resuscitation, if:
 - No signs of life for at least 15 min
 - Catastrophic injuries, e.g., penetrating head injury, loss of brain tissue
- Consider terminating resuscitation, if:
 - No ROSC after potentially reversible TCA causes were addressed
 - No cardiac motion in POCUS, even with organized ECG activity present, after the reversible causes of TCA were addressed
- Prolonged resuscitation efforts in futile TCA cases unnecessarily increase risks for:
 - Stick or cut-injuries
 - Infections
 - Psychological trauma
 - Drain-limited system resources (e.g., personnel, ER capacity, and blood products)

My Algorithm for TCA

- Stop Compressions
- Create an open (patent) airway, not necessarily intubate
- Ensure adequate IV access/IO, MTP
- B/L routine chest decompression ("finger thoracostomies")
 - Predominantly with blunt trauma

- POCUS/FAST, assess for SOL, source of hemorrhage, and r/o cardiac tamponade
- +- REBOA if (+) pulse and peri-arrest
- +/- resuscitative thoracotomy (and/or clamshell thoracotomy), pericardotomy, cross-clamp aorta, internal cardiac massage
- OR with ROSC

It Starts With You!!

